
C* TO APPEAR: INTERNATIONAL CONFERENCE ON DATA ENGINEERING, FEBRUARY 1992

Ln=

_Database Recovery Using Redundant Disk Arrays*

Antoine N. Mourad W. Kent Fuchs Daniel G. Saab D T c
Center for Reliable and High-Performance Computing ELECTE

Coordinated Science Laboratory FB
i University of Illinois FEB 0 6 1992SThis do'cument has been a PPY°-ved I U r b a n a, I l l i n o i s 6 1 8 0 1 W

for public release and sale is Sv D
distribution is unlimited U

Abstract Another type of failure is media failure. One com-
mon way to deal with this type of failure is by periodi-

Redundant disk arrays provide a way for achieving cally generating archive copies of the database and by
rapid recovery from media failures with a relatively low logging updates to the database performed by commit-
storage cost for large scale database systems requiring ted transactions between archive copies into a redo log
high availability. In this paper we propose a method for file. When a media failure occurs the database is re-
using redundant disk arrays to support rapid recovery constructed from the last copy and the log file is used
from system crashes and transaction aborts in addi- to apply all updates performed by transactions that
tion to their role in providing media failure recovery, committed after the last copy was generated. In such
A twin page scheme is used to store the parity infor- a case, a media failure causes significant down time
mation in the array so that the time for transaction and the overhead for recovery is quite high. For large
commit processing is not degraded. Using an analyti- systems, e.g., with over 50 disks, the mean time to
cal model, we show that the proposed method achieves failure (MTTF) of the permanent storage subsystem
a significant increase in the throughput of database can be less than 25 days'. Mirrored disks have been
systems using redundant disk arrays by reducing the employed to provide rapid media recovery [1]. How-
number of recovery operations needed to maintain the ever, disk mirroring incurs a 100% storage overhead
consistency of the database, which is prohibitive for many applications. Redun-

dant Disk Array (RDA) organizations [2, 3] provide an
alternative for maintaining reliable storage. However,

1 Introduction even when disk mirroring or RDAs are used, archiving
and redo logging may still be necessary to protect the

In a database system, rapid recovery may be nec- database against operator errors or system software
essary for restoring the database to a consistent state design errors.
after a failure. Several types of failures can occur. The In this paper, we present a technique that exploits
most typical are transaction aborts which can be due the redundancy in disk arrays to support recovery
to program errors, deadlocks, or can be user initiated, from transaction and system failures in addition to
When a transaction aborts, the recovery manager has providing fast media recovery. This is achieved by
to restore all database pages modified by the trans- using a twin page scheme for storing the parity infor-
action to their previous state. The second type of mation making it possible to keep the old version of
failure is a system crash. In this case system tables the parity along with the new version. The old ver-
maintained in main memory are lost. The recovery sion of the parity is used to undo updates performed
mechanism has to UNDO all updates made to the by aborted transactions or by transactions interrupted
database by transactions that were active when the by a system failure.
crash occurred and to REDO modifications performed In Sections 2 and 3 we briefly review several tech-
by complete transactions and not yet reflected in the niques for transaction recovery in database systems
database at the time of the crash. and discuss two RDA organizations. In Section 4, we

*This research was supported in part by the National Aero- present our database recovery scheme. The results of
nautics and Space Administration (NASA) under Contract our performance analysis are detailed in Section 5.
NAG 1-613 and in part by the Department of the Navy and
managed by the Office of the Chief of Naval Research under
Grant N00014-91-J-1283. 'Assuming an MTTF of 30,000 hours for each disk.

92-027779

2 Recovery Techniques

Recovery algorithms typically use some form of log-
ging or shadowing. In the logging approach [4], be-
fore a new version (after-image) of a record or page Figure 1: RAID with rotated parity on four disks.
is written to the database, a copy of the old version
(before-image) is placed into a sequential log file. If a
transaction aborts or the system crashes, the log file processed, Action Consistent Checkpoints (ACC) are
is analyzed and the state of the database is restored. less restrictive and require that no update statements
In the shadowing approach the update of a page is are processed during checkpoint generation.
placed into a new physical page on disk [5, 6]. The
physical pages containing the old versions are released
after all updates of the committing transaction have 3 Redundant Disk Arrays
been written to disk. One problem with the shadowing
approach is dynamic mapping since it requires main- Striped disk arrays have been proposed and imple-
taining a very large page table which leads to high I/O mented for increasing the transfer bandwidth in high
overhead during normal processing. Another problem performance I/O subsystems [8, 9, 10]. In order to
is the disk scrambling effect which decreases the se- allow the use of a large number of disks in such ar-
quentiality of disk accesses. rays without compromising the reliability of the I/O

In describing and in analyzing our method, we will subsystem, redundancy is sometimes included in the
use the following taxonomy of database recovery algo- form of parity information [3, 10]. Patterson et al. [3]
rithms introduced by Haerder and Reuter [7]. They have presented s ;veral possible organizations for Re-
classify recovery algorithms with respect to the follow- dundant Arrays of Inexpensive Disks (RAID). One in-
ing four concepts: teresting organization is RAID with rotated parity in

Propagation 2 of updates. The propagation which blocks of data are interleaved across N disks
strategy can be ATOMIC in which case any set of while the parity of the N blocks is written on the
updated pages can be propagated to the database in N + 1" disk. The parity is rotated over the set of
one atomic action. In the -,ATOMIC case, propaga- disks in order to avoid contention on the parity disk.
tion of updates can be interrupted by a system crash Figure 1 shows the array organization with four disks.
and database pages are updated-in-place. The organization allows both large (full stripe) con-

Page replacement. Two policies can be used: current accesses or small (individual disk) accesses.
the STEAL policy allows pages modified by uncom- In this paper, we concentrate on small read/write ac-
mitted transactions to be propagated to the database cesses. For a small write access, the data block is read
before end-of-transaction (EOT); the opposite policy from the relevant disk and modified. To compute the
is referred to as -STEAL. No UNDO recovery is nec- new parity, the old parity has to be read, XORed with
essary with a -STEAL policy, the new data and XORed with the old data. Then the

EOT processing. Two categories exist: the new data and new parity can be written back to the
FORCE discipline requires all pages modified by a corresponding disks. Stonebraker et al. [11] have ad-
transaction to be propagated before EOT; the oppo- vocated the use of a RAID organization to provide
site discipline is called -,FORCE. high availability in database systems.

Checkpointing Schemes. Checkpointing is used Gray et al. [2] studied ways of using an architec-
to propagate updates to the database in order to min- ture such as RAID in on-line transaction processing
imize the number of REDO recovery actions to be (OLTP) systems. They found that because of the na-
performed after a crash. In the Transaction Oriented ture of I/O requests in OLTP systems, namely a large
Checkpointing (TOC) scheme, a checkpoint is gener- number of small accesses, it is not convenient to have
ated at the end of each transaction. This is equivalent several disks servicing the same request. Hence, the _
to using the FORCE discipline in EOT-processing. organization shown in Figure 2 was proposed. It is re-

I.......................................Two other types of checkpoints can be used: Transac- ferred to as parity striping. It consists of reserving an
tion Consistent Checkpoints (TCC) are generated dur- area for parity on each disk and writing data sequen- .l .
ing quiescent periods where no transactions are being tially on each disk without interleaving. For a group

2 Propagation to the database means that the new version is of N +1 disks, each disk is divided into N +1 areas one
visible to higher level software. Updates can be written to disk of these areas on each disk is reserved for parity and .!Os
without being propagated (e.g., shadowing). the other areas contain data. N data areas from N -

L~r),

r _&W: 0 without UNDO logging. If additional pages in the par-
D21 ity group have been modified and need to be written

back to the database then their before-images must
be logged first. A dirty parity group goes back to the
clean state when the transaction that caused it to be-

P30 come dirty commits. A table in main memory contains
the numbers of all parity groups that are in the dirty
state. It also contains the number of the data page

Figure 2: Parity striping of disk arrays. within the group that caused the group to be in the
dirty state and the number of the parity page holding
the updated parity. Only log N bits need to be used to

different disks are grouped together in a parity group store the data page number and one bit for the parity
and their parity is written on the parity area of the page number. The table is used to check whether a
N + It disk. page updated by an active transaction can be written

back to disk without UNDO logging.
When a transaction updates a page, that page can

4 RDA-Based Recovery be written back to the database without UNDO log-
ging if its parity group is clean or if its parity group is

In the remainder of this paper, we consider an i/O dirty and the update is for the same page that caused
subsystem that is a collection of redundant disk ar- the group to move into the dirty state, i.e., the same
rays. The organization of the arrays being either par- page has been updated, stolen from the buffer then
ity striping or data striping (RAID with rotated par- rereferenced by the same transaction, updated and
ity). In the case of data striping we assume that a stolen again from the buffer before EOT3 . Note that
large striping unit is used in order to ensure that I/O this does not affect the degree of concurrency or inter-
requests will typically be serviced by a single data disk. fere with the locking policy used in the system. We do
We also make the following assumptions: Communi- not specify when a transaction can or cannot modify
cation between main memory and the I/O subsystem a page. We only specify when a modified page can be
is performed using fixed size pages; Database pages written back to disk without UNDO logging.
are updated in place which implies that propagation If a single parity page is used, then when a group
is -ATOMIC; A STEAL policy is used thus allowing becomes dirty the old parity information has to be
modified pages to be propagated before EOT. kept in the parity page to be able to recover in case of

a transaction failure. That would mean that when the
4.1 General Description of the Approach transaction commits, the new parity has to be recom-

puted in order to update the parity page. That would

RDA-based recovery makes use of the parity infor- require reading all the data pages in the group in or-
mation present in the disk arrays to undo updates per- der to compute the new parity. To avoid that problem

formed by aborted transactions. However, the parity a twin page scheme is used for the parity pages. The

is not sufficient by itself to undo all updates performed basic mechanism of the twin page scheme is as follows:
by an aborted transaction. Updates that cannot be one of the parity pages always contains the valid par-
undone using the parity are dealt with using a log file. ity of the group while the other page contains obsolete

A page parity group is the set of pages that share parity information. When a data page is modified in
the same parity page. In the following, unless there a parity group, the obsolete parity page (P for exam-
is ambiguity, we will use the term parity group to de- pIe) is updated with the new parity of the array. If
note a page parity group. A parity group can be in the transaction performing the update commits then
one of two states: clean or dirty. A parity group is the modified parity page (P) becomes the valid parity
dirty when one of its data pages has been modified page otherwise the other parity page (P') remains the
by a transaction and the modified version has been valid parity page and its contents are used to recover
written back to the database before the transaction the data page that was modified by the failed trans-
modifying it commits (using the notation of Haerder action. In order to recover the old version of a data
and Reuter, the page has been stolen from the buffer). page after a transaction abort it is sufficient to XOR
Otherwise the parity group is called clean. Only one 3 Normally such an event should not occur often since buffer
modified data page per parity group can be written management algorithms are not supposed to replace a page that
back to the database by uncommitted transactions will be referenced again in the near future.

the contents of both parity pages and the new data have been modified on disk by those transactions. A

page: Dold = (P 9 P') e Dnew. When a parity group Begin-Of-Transaction (BOT) record needs to be writ-

is dirty because one of its data pages Di has been ten to a log file after the transaction begins and before

stolen from the buffer and another page Dj needs to it writes back any modified pages to disk and an EOT

be written to disk, UNDO logging must be performed record must be written to the log file when the trans-

for Dj 4 then both parity pages P and P' need to be action commits. Modified database pages for which

updated since when the group is dirty it is necessary UNDO logging has been performed, can be recovered
to maintain a current parity page reflecting the actual by reading their before-images from the log. Modified
parity of the data on disk and an "old" parity page database pages for which UNDO logging has not been

that would be used to recover the uncommitted da.ta performed can be recovered using the parity pages.

page Di in case of a transaction abort. In all cases, However information on which pages have been writ-
when writing a data page to disk the corresponding ten to the database without UNDO logging has to be
parity page(s) must be updated first. saved in permanent storage. To solve this problem, a

technique similar to the one used in TWIST [12] can

4.2 Twin Page Management be employed. In TWIST, a twin page scheme is used
to store all database pages, no before-image logging is

The twin parity pages are stored on different disks. performed and the same problem of identifying which

This is necessary in order to be able to perform trans- pages to undo after a crash is encountered. The solu-

action recovery following a disk failure. In order to tion makes use of a log chain which consists of point-

identify which of the twin parity pages contains the ers stored in the page headers that link together pages

valid parity information, a timestamp is stored in the modified by the same active transaction. In our case,

page header. The page with the highest timestamp only modified pages written back to the database be-

contains the valid parity infdrmation. When an up- fore EOT without UNDO logging will be part of the

date is undone after a transaction or system failure, log chain. The head of the chain though has to be

the timestamp of the current parity page is reset to 0. logged along with the transaction id. I/O operations

When a data page is updated both parity pages are to maintain the log chain can be hidden behind regu-

read and the one with the highest timestamp is se- lar I/O requests and do not affect significantly system

lected for modification. Then the parity is computed performance.
and the modified parity page is written back to disk.
In order to avoid reading both parity pages, a bit map
can be maintained in main memory indicating which is 5 Performance Analysis
the current parity page for each of the parity groups
in the database. However such a bit map may not In order to evaluate the benefit of RDA-recovery,
survive a system crash. Hence following a crash that we develop an analytical model to evaluate transac-
destroys the map, both parity pages will have to be tion throughput for different algorithms. Since the
read to identify the current parity page and to recon- cost of maintaining parity information in a system
struct the bit map. In this case, two bits would have with redundant disk arrays is relatively high, we do
to be used in the bit map for each parity group to not advocate the use of RDAs solely for the purpose
encode the three possible states: parity page P is the of supporting transaction and crash recovery. We look
current parity page, parity page P' is the current par- at the benefit of using RDA recovery in a system that
ity page or the information is not available and both already needs RDAs for the purpose of rapid media
pages have to be read from disk. Following a system recovery. We do this by comparing the throughput
crash a background process that runs during idle pe- of systems using traditional recovery algorithms and
riods of the system can be initiated to reconstruct the redundant disk arrays to systems with the same re-
bit map. covery algorithms in combination with RDA recovery.

We consider both page and record logging and in each
case we examine two different recovery algorithms and

evaluate the improvement achieved by adding RDA
Following a system crash we need to identify which recovery to them. As far as storage is concerned, the

transactions have to be backed out and which pages extra cost involved in using RDA recovery is that of

4The before-image of the page in the case of page Ingging or the twin page scheme for the parity which is (1001N)%
of the modified record(s) in the cae of record logging must be of the initial data storage cost.
written to a log file. RDA recovery reduces the amount of UNDO log-

ging and hence is appropriate for systems using ber of I/O operations, we assume that the availability
update-in-place which implies--A TOMIC propagation interval is measured in units of page transfers.
and a STEAL policy for page replacement. We there- Let c,. denote the cost of updating a retrieval trans-
fore restrict ourselves to the analysis of such algo- action and cu that of an update transaction. Then ct
rithms. Within this class of algorithms we examine can be obtained by: ct = (1 - fu)cr + fucu.
both the FORCE and -FORCE strategies for EOT- In the following, we derive the complete cost equa-
processing. For algorithms of the type -,ATOMIC, tions for algorithms of the type -,ATOMIC, STEAL,
STEAL, FORCE, only a TOC checkpointing policy FORCE, TOC in the case of record logging. How-
makes sense. For algorithms of the type -,ATOMIC, ever the cost equations for the -'ATOMIC, STEAL,
STEAL, -'FORCE, both ACC or TCC checkpoints -,FORCE, ACC type of algorithms and the equations
could be used however algorithms using ACC check- for the case of record logging have been omitted due
pointing were shown to outperform those using the to lack of space. These equations and their derivations
TCC type8 [13]. Hence we only look at the former can be found in [14].
type of checkpointing.

We use the same basic model as the one introduced 5.1 Probability of Logging
by Reuter in his evaluation of the performance of sev-
eral database recovery techniques [13]. We assume We consider a set of K pages that have been mod-
that the system is I/O bound and therefore we look ified by active transactions and we compute the ex-
only at the number of 1/0 requests required to perform pected value of the size (X) of the subset of pages that
a given operation. We also assume that the system is can be written back to the database without UNDO
running continuously with no periodic shutdown. This logging. Let S be the total number of data pages in the
implies that all cleanup activities required by the algo- database. We assume that the K pages are randomly
rithm are accounted for in the cost calculations instead chosen from the S pages in the database. Note that
of assuming they are performed by some background by using data striping (RAID) with a large striping
process or during shutdown periods, unit or parity striping, any sequentiality in database

The workload considered consists of a set of P accesses acts in favor of our scheme by distributing the
transactions executing concurrently in the system. pages accessed over distinct parity groups. Hence as-
Transactions are of two types: update or retrieval. The suming that the pages are randomly distributed leads
fraction of update transactions is fu. Each transaction to conservative results. The expected value of X is
accesses s database pages. The fraction of accessed (S-)

pages that are modified by an update transaction is pu. given by: E(XJ - 1 - and the probability
To characterize the behavior of the database buffer, we of logging is obtained using pi = 1 - E[X]/K. The
use the communality C which denotes the probability derivation of the expression for E[X] is omitted and
that a page requested by an incoming transaction is can be found in [14].
present in the buffer. It is assumed that the buffer is
sufficiently large so that once a transaction has refer- 5.2 Algorithm of the Type -,ATOMIC,
enced a page, the page will remain in the buffer until
it is no longer needed by the transactions . SOna

The cost of recovery after a system crash is denoted gg

by c, and is measured by the number of page trans- With the FORCE discipline, the checkpoint is taken
fers between main memory and the disk subsystem at the end of each transaction. The cost of checkpoint-
required to perform recovery. The cost of executing a ing is therefore accounted for in the cost of logging.
transaction is denoted by c. The transaction through- Hence the throughput ib given by:
put rt is defined as the number of transactions pro-
cessed during an availability interval. An availability r = (T - c5)/ct.
interval T is the period between two system crashes.
Since all cost measures are evaluated in terms of num- Given our assumption that pages are not rereferenced

"Also TCC checkpointing contradicts our assumption of a by the calling transaction after they have been re-
continuously running system since it requires the establishment placed in the buffer, the cost of writing and logging
of a quiescent point where no update transactions are present a page will be the same whether the page is stolen
in the system.

6 The page could still be replaced before the transaction corn- from the buffer before transaction commit or whether
mit@ if a STEAL policy is used, however if it is replaced it will it stays in the buffer until EOT and is then logged
not be rereferenced by the transaction, and written to the database. Hence we will account

for all the costs involved in logging the pages and writ- ig normally written along with the BOT record in the

ing them back to the database as part of the cost of same page except when the first page written by the

logging. Hence we obtain the following equations for transaction to the database has to be logged and not

for c. and c.: all pages updated by the transaction have to be logged.
To evaluate Cb we assume that a transaction aborts

cr = s(1 - C) in the middle of processing its pages and that the other

c, = s(1 - C) + c1 + pacb concurrent update transactions have also logged half
their modified pages. The UNDO log has to be read

where cl is the cost of logging the transaction, Pb is up to the BOT record of the aborting transaction.
the probability of a transaction abort and cb is the
cost of backing out the transaction in the case wiere Cb = (pus/2)(Pf.) + Pf. + 4 (pus/2) + 4

an abort occurs. The expression for ci is:
The first term is the number of before-images that

cl = 3 x spU + 4 x (2 spu) + 4 x 4 have to be read from the log. The second term is the
number of BOT/EOT records to be read. The third

The first term is the cost of writing the pages back to term is the number of page transfers to and from the
the database. Each write to the disk array costs three database to undo the modifications performed by the
I/O operations since, with the FORCE discipline, the aborting transaction and the last term accounts for
old data is kept in the buffer until EOT for the pur- the writing of a rollback record. With RDA recovery
pose of UNDO logging. The second term is the cost of the above formula becomes:
writing to the UNDO and REDO log files. REDO in-
formation is needed only in the case where an operator = = (pupts/2)Pf- + (pt - p)1 ')Pf. + Pf. +
error or a system software error damages more than (pus/ 2)(6 pt + 5(1 - p')) + 4
one disk in the disk array. The log files are stored
separately which makes reading the log to back-out In the first term the number of logged before-images to
aborted transactions less costly. The last term in the be read is now multiplied by pl. The second term is the
expression of cj is the cost of writing BOT and EOT expected number of log chain headers to be read from
records to each of the log files. the log. The other major difference is in the fourth

The probability of having to log a page with RDA term. It is due to the fact that, when recovering a page
recovery is dependent on the number K of pages writ- that has been logged, up to six I/O operations might
ten back to the database by incomplete transactions. be necessary since its parity group may still be dirty9 .
We assume that when a transaction writes back a page On the other hand, if the page has been written to the
to the database before committing, the other concur- database without being logged, it is necessary to read
rent transactions are halfway through writing their both parity pages in its parity group and the "new"
own modified pages. Therefore K is equal to half the data page and then overwrite the database page with
total number of pages modified by concurrent update the old data and modify the state of the parity page
transactions. Hence, in the expression for the proba- from working to invalid by resetting the timestamp in
bility of logging obtained in Section 5.1, K must be its header. Hence five I/O operations will be necessary
replaced with7 Psfp,/2. With RDA recovery, the in the latter case.
formula for the cost of logging becomes: After a system crash, only UNDO recovery needs

to be performed. Hence the formula for c, contains
= (3 + 2 pr)spu + 4 (spu + spupI + 4) + 4(p, - pr") the cost of reading the UNDO log file up to the BOT

The major difference with cj is that UNDO logging has record of the oldest transaction alive at the time of the

to be performed only when the parity group is dirty, crash and then overwriting the modifications. The

i.e., with probability pl. The term 2p, is added to 3 work of the oldest transaction alive overlapped with

to account for the fact that when writing to a dirty the work of some committed transactions therefore the

parity group both parity pages need to be updated8 . log records for half the work of about 2Pfu transac-

The last term in the expression of c' denotes the cost tions need to be read. Hence the expressions for c,

of writing the log chain header to the log. The header and c'o are:

7Page logging implies the use of page locking and hence the c, = Pfu(spu + 2) + 4(Pfupus/2)
sets of page modified by concurrent update transactions ae
disjoint. 9Here we use an upper bound for the costs involved in RDA

'We assume that log file pages and data pages do not belong recovery in order to keep things simple. This will lead to a
to the same parity groups. conservative estimate of the benefit of our method.

= Pf(spupi + 2(pt - p;P.) + 2) + percent increase in throughput achieved by RDA re-

Pf(ps/2)(4p + 5(1 - pr)) + S/N. covery combined with the -,FORCE, ACC algorithm
as a function of the number of pages accessed by each

The term S/N is an upper bound for the cost of re- transaction (s) for the high update frequency environ-
constructing the bit map for the current parity page. ment with C = 0.9.

5.3 Results

We evaluate the algorithms in two different environ- 6 Conclusions

ments depending on the frequency of update transac- In this paper, we have presented a scheme that uses
tions. The first four rows of Table 1 show the through- redundant disk arrays to achieve rapid recovery from
put as a function of the communality C both in a media failures in database systems and simultaneously
system with high update frequency and in a system provide support for recovery from transaction aborts
with high retrieval frequency for algorithms of type and system crashes. The redundancy present in the
-,ATOMIC, STEAL, FORCE, TOC with page log- array is exploited to allow a large fraction of pages
ging. As expected the improvement in throughput modified by active transactions to be written to disk
using RDA recovery is much more significant in the and updated in place without the need for undo log-
high update frequency environment. For the latter ging thus reducing the number of recovery actions per-
environment and for C = 0.9 the increase in through- formed by the recovery component. The method uses
put is about 42%. The entries shown in the table areactually values of r,/100. All the values for the dif- a twin page scheme to store the parity information so
acetaly alets of All the delest for thewere that it can be efficiently used in transaction undo re-
ferent parameters of the model, except for N, were oeyThexrstaguediabt(10Nftake frm [31.Thes vauesare = 500,N =10, covery. The extra storage used is about (100/N)% of
taken from (13]. These vaiues are: S F 5000, N -10, the size of the database, N being the number of disks
P = 6, pb = 0.01 andT 5.10. For the high up- the array.date frequency environment, a - 10, f, -- 0.8 and inteary

=d0.9 whileefor theihigheretrieva10frequency8envi- We used a detailed analytical model to evaluate the
p. -- 0.9 while for the high retrieval frequency envi- benefit of our scheme in a system equipped with redun-ronment, s = 40, f,, = 0.1 and p,, = 0.3. dant disk arrays. We found that, in the case of page

The following four rows of Table 1 show the re- logging, a FORCE, TOC algorithm combined with
suits for both environments for an algorithm of type RDA recovery significantly outperforms a FORCE,
-ATOMIC, STEAL, -FORCE, ACC with page log- TOG algorithm without RDA recovery as well as
ging. It can be seen that the improvement is not sig- -FORCE, ACC type of algorithms. In the case of
nificant in this case. However the interesting result reorE , we ound th C al-
is that while without RDA recovery, the -'FORCE, record logging, we found that a -'FORCE, ACC al-
A CC type algorithm outperforms the FORCE, TOC gorithm performs best and that the addition of RDA
scheme, when RDA recovery is used, the situation is recovery to it improves significantly its performance
reversed and the latter algorithm outperforms the for- especially for transactions with a large number of up-
mer by a significant margin, dated pages.

The last eight rows of Table 1 show the results in
the case of record logging. Unlike the page logging
case, the -'FORCE, ACC scheme performs much bet- References
ter than the FORCE, TOC scheme for the range of
values of C encountered in typical applications [15]. [1] D. Bitton and J. Gray, "Disk shadowing," in Pro-
Also, for the -'FORCE, ACCalgorithm, the increase in ceedings of the 14th International Conference on
throughput achieved by using RDA recovery is higher Very Large Data Bases, pp. 331-338, Sept. 1988.
than for the same algorithm with page logging. This [2] J. Gray, B. Horst, and M. Walker, "Parity strip-
is the case because, with record logging, the cost of ing of disk arrays: Low-cost reliable storage
logging the updates of a stolen page is high relatively with acceptable throughput," in Proceedings of
to the cost of logging non stolen pages and RDA recov- the 16th International Conference on Very Large
ery reduces that cost by eliminating the need for log- Data Bases, pp. 148-161, Aug. 1990.
ging stolen pages in most cases. For example, for the
high update frequency environment and for C = 0.9, [3] D. Patterson, G. Gibson, and R. Katz, "A case for
the increase in throughput is about 14%. The benefit redundant arrays of inexpensive disks (RAID),"
of RDA recovery increases with the amount of work in Proceedings of the ACM SIGMOD Conference,
performed by each transaction. Table 2 shows the pp. 109-116, June 1988.

Communality, C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
page TOC update -'RDA 493 498 503 508 513 518 524 529 535 541
logging RDA 678 687 697 707 717 727 738 749 761 772

retriev. -RDA 976 1059 1157 1274 1419 1601 1836 2152 2600 3283
RDA 1075 1176 1298 1448 1638 1886 2221 2701 3446 4758

ACC update -,RDA 488 502 518 536 558 584 617 656 703 756
RDA 507 519 534 551 572 597 627 664 707 757

retriev. -'RDA 967 1048 1145 1260 1403 1582 1814 2131 2604 3987
_RDA 1010 1095 1195 1315 1462 1645 1880 2195 2656 3997

record TOC update -RDA 1544 1594 1647 1704 1765 1831 1902 1978 2061 2132
logging RDA 1564 1614 1668 1726 1788 1854 1926 2003 2086 2159

retriev. ",RDA 1256 1398 1573 1801 2102 2532 3169 4265 6431 10934

RDA 1258 1340 1575 1804 2106 2538 3177 4280 6464 11025
A U update "-,R DA 1072 1165 1283 1442 1664 2006 2566 3694 6558 18127

RDA_ 1302 1404 1536 1714 1964 2352 2989 3771 7467 19454
retriev. "RDA 1220 1353 1517 1729 2006 2397 2971 3949 5948 14236

RDA 1377 1527 1712 1949 2258 2688 3311 4349 6406 14756

Table 1: Throughput for the various algorithms with and without RDA recovery

. 151 151 251 351451
increase 6.5 22.6 38.6 54.3 69.5

Table 2: Benefit of RDA recovery as a function of the number of pages referenced by a transaction.

[4] J. Gray, P. McJones, M. Blasgen, B. Lindsay, ference on Data Engineering, pp. 336-342, Feb.
R. Lorie, T. Price, F. Putzolu, and I. Traiger, 1986.
"The recovery manager of the system R database
manager," ACM Computing Surveys, vol. 13, [11] M. Stonebraker, R. Katz, D. Patterson, and
no. 2, pp. 223-242, 1981. J. Ousterhout, "The design of XPRS," in Pro-

ceedings of the 14th International Conference on
[5] J. Kent and H. Garcia-Molina, "Optimizing Very Large Data Bases, pp. 318-330, Sept. 1988.

shadow recovery algorithrim," IEEE Trans. Soft-
ware Engineering, vol. 14, pp. 155-168, Feb. 1988. [12] A. Reuter, "A fast transaction-oriented logging

scheme for UNDO recovery," IEEE Thans. Suft-
[6] R. A. Lorie, "Physical integrity in a large seg- ware Engineering, vol. SE-6, pp. 348-356, July

mented database," ACM Trans. Database Sys- 1980.
terns, vol. 2, pp. 91-104, Mar. 1977.

[13] A. Reuter, "Performance analysis of recovery
[7] T. Haerder and A. Reuter, "Principles of techniques," ACM Transactions on Database Sys-

transaction-oriented database recovery," ACM terns, vol. 9, pp. 526-559, Dec. 1984.
Computing Surveys, vol. 15, pp. 287-317, Dec.
1983. [141 A. N. Mourad, W. K. Fuchs, and D. G. Saab,

"Performance evaluation of redundant disk ar-
[8] M. Y. Kim, "Synchronized disk interleaving," ray support for transaction recovery," Tech. Rep.

IEEE Trans. Computers, vol. 0-35, pp. 978-988, CRHC-91-28, Center for Reliable and High-
Nov. 1986. Performance Computing, Univ. of Illinois at

[9] M. Livny, S. Khoehafian, and H. Boral, "Multi- Urbana-Champaign, 1991.
disk management algorithms," in Proceedings of [15] W. Effelsberg and T. Haerder, "Principles of
the A CM Sigmetrics Conference on Measurement database buffer management," ACM Transac-
and Modeling of Computer Systems, pp. 69-77, tions on Database Systems, vol. 9, pp. 560-595,

Dec. 1984.

[10] K. Salem and H. Garcia-Molina, "Disk striping,"
in Proceedings of the IEEE International Con-

